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The results of experiments on the synthesis of the off-axis quantized kinoforms of binary objects with the
use of the weighting iterative Fourier transform (WIFT) algorithm are presented. Kinoforms are registered
with a liquid-crystal spatial light modulator (SLM). A simple procedure to introduce the carrier frequency
into the structure of an axial kinoform is proposed. An image reconstructed by an off-axis kinoform is free
from the noises with the zero and close frequencies caused by the imperfection of both the phase mode
of operation of the SLM and the effects of quantization of the registered phase. Data on the diffraction
efficiency are also given.
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Possessing a high diffraction efficiency, the kinoform op-
tical elements are widely used for the beam splitting (fan-
out), beam shaping, and pattern or image generation[1,2].

The detailed description of the weighting iterative
Fourier transform (WIFT) algorithm was given earlier[3],
where we also showed that it is most efficient for the
synthesis of the kinoforms of binary objects. In brief, the
essence of the WIFT-algorithm consists in the following.
Firstly, one or several iterations (Kgs) with an input real
object fo are realized by the classical Gerchberg-Saxton
(GS) scheme. Then, in all iterations with k > Kgs at the
formation of the input, the amplitude fo will be replaced
by a new amplitude defined as fk = αkfo, where the
weight coefficients αk are determined by the recurrence
relation αk = αk−1βk−1, (k > 1), βk−1 = fo/(| fk−1 |+ε),
| fk−1| is the reconstructed amplitude at the (k−1)th it-
eration, and ε is a small number ∼ 10−10. The processing
of the phases of an object plane and the kinoform remains
the same as that in the classic GS-algorithm. From the
viewpoint of optics, the system of weight coefficients αk

normalized to unity can be interpreted as some object-
dependent amplitude filter which acts on the initial ob-
ject fo and varies in the process of iterations. We note
that all the coefficients αk in the iteration process tend
to unity in the case when the iterative process converges.

In this letter, we study the potentialities of the WIFT
algorithm at the synthesis of the off-axis kinoforms of bi-
nary objects with regard for the quantization of a phase
registered with a spatial light modulator (SLM). In the
course of modeling and optical experiments, we com-
pared the WIFT algorithm with the kinoform version of
the Fienup input-output (IO) algorithm[4]. The latter is
most convenient for the sake of comparison, because it
is well known and, like the weighting algorithm, differs
from the GS-algorithm only by means of processing of
a field in the object plane. The programming of the IO
algorithm is realized by Eqs. (8)−(10) from Ref. [4].

A number of model experiments with various binary
objects (with sizes of 64×64 and 128×128) were realized

with the purpose to compare the potentialities of the
WIFT and IO algorithms at the synthesis of quantized
kinoforms. In all the cases, the same phase starting
diffuser with a uniform distribution of phases in the in-
terval (0–2π) is used. In the experiments involving the
IO algorithm, we used the optimum value of the object-
depended coefficient β = βopt in Eqs. (8) and (9) of
Ref. [4], which was determined by means of the cyclic
repetition of the procedure of synthesis for various val-
ues of β (from the interval 0.1−5.0 with a step of 0.1).
In Figs. 2 and 3 the results of model experiments on
the kinoforms’ synthesis for one of the typical binary
objects (Fig. 1(a)) with a dimension of 128×128 counts
are presented. The variance of the intensities of images
reconstructed in the process of iterations was evalu-
ated by the standard formula[3]. The presented plots
for the ranges and the dispersions of the output inten-
sity clearly demonstrate the advantages of the stepwise
quantization[5] as compared with the direct quantization
of the kinoform phases. As seen from Figs. 2 and 3 and
Tables 1 and 2, the advantage of the WIFT algorithm
over the IO algorithm as for the quality of reconstructed
images of binary objects at the continuous representation
of the phase of a kinoform[3] is lost at the transition to
the quantized representation. If the spread of the inten-
sities of bits ∆IWIFT

one−bits for bit array-object is less than
∆IIO

one−bits for any number of quantization levels (NQL),

 

Fig. 1. Binary objects of 128×128.
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Fig. 2. Ranges of output intensity without quantizing as well
as with stepwise and direct quantizing of the kinoform phase
onto seven levels: (a) WIFT algorithm; (b) IO algorithm.

Table 1. Dependence of the Ration IWIFT
one-bits/ IIO

one-bits

from the Number of Quantization Levels

Number of Quant. Ratio ∆IWIFT
one−bits/∆IIO

one−bits

Levels Bit-array Object Letter-F Object

3 0.693 1.011

7 0.858 1.121

15 0.639 1.112

31 0.631 1.103

63 0.523 0.651

127 0.371 0.72

255 0.384 0.45

Table 2. Dependence of the Ration Imin
one-bits/ Imax

zero-bits

from the Number of Quantization Levels

Number of Quant.
Ratio Imin

one−bits/Imax
zero−bits

Levels
Bit-array Object Letter-F Object

WIFT IO WIFT IO

3 1.20 1.31 0.65 0.58

7 8.50 7.84 3.95 3.42

15 11.70 12.01 6.83 4.76

31 10.62 14.10 6.20 8.83

63 17.50 14.95 6.23 7.07

127 13.01 14.14 8.18 8.26

255 14.03 12.80 8.61 9.59

then the IO algorithm is preferable for letter-objects at
NQL631. At the same time, by the ratio Imin

one−bits/
Imax
zero−bits(which can be regarded as a stronger version of

the ordinary signal/noise ratio), we have the inverse pat-
tern for letter-objects: at small NQL, the WIFT algo-
rithm is preferable.

The data in the Tables 1 and 2 were calculated using
the stepwise quantization of the kinoform phases. Note
that the values in Tables 1 and 2 can vary by depending
on the chosen start-diffuser. However, the total pattern
is conserved, that is none of the algorithms has the obvi-
ous advantage. But the WIFT algorithm conserves some
advantage, because it contains no parameters requiring
the optimization (contrary to the IO algorithm), which
essentially accelerates the counting rate.

In the synthesis of an axial Fourier-kinoform which re-
constructs the image in the zero order of diffraction, the
inaccuracy of the representation of the kinoform’s phase
leads to the appearance of a bright spot surrounded by
noises at the center of the image. This effect can be
eliminated in the single way due to a displacement of the
image, as a whole, to the side from the optical axis of
the system of reconstruction. This can be achieved by
the synthesis of an off-axis kinoform which reconstructs
the image in the nonzero order. We proposed a simple
method of construction of off-axis kinoforms[6] by means
of the introduction of a space carrier (linear phase) in the
axis kinoform. The method has certain advantages over
the known methods. In particular, it admits a greater
shift of the reconstructed image from the optical axis
of the Fourier-system. In this method, the linear phase
2π(xou + yov) is supplemented to the phase ψ(u,v) of an
on-axis kinoform at the last iteration. As a result, in the
ideal case, the calculated kinoform will reconstruct the
image as

foff(x, y) =

=−1{exp[i(ψ(u, v) + 2π(xou + yov)]} =
f(x, y) ⊗ δ(x − xo, y − yo) =
f(x − xo, y − yo) . (1)

Here, =−1 is the operator of the inverse Fourier-
transformation, foff(x, y) is the off-axis image, f(x, y)
is the axial image, δ is the delta-function, the symbol ⊗
stands for the operation of convolution, and xo, yo are the
shifts of the image along the axes x, y. In practice[7], in
order to eliminate the influence of a finite size of the
pixel-active window τ1×τ2 of the SLM on the recon-
structed image, the input object f(x, y) must be pre-
distorted in the start of iterations by

f̃(x, y) = f(x, y)[sinc1(x)sinc2(y)]−1, (2)

where

sinc1(x) = sinc[τ1(x + xo)/∆x],
sinc2(y) = sinc[τ2(y + yo)/∆y],
sinc(z) = sinπz/πz, (3)

where ∆x×∆y is the size of the image. Under conditions
of |x| 6 ∆x/2, |y| 6 ∆y/2, and τ1, τ2 6 1, assuming that
∆x = ∆y and τ1 = τ2, in order that the denominator in
Eq. (2) do not become zero in the region |x, y| 6 ∆x/2, it

120007-2



COL 9(12), 120007(2011) CHINESE OPTICS LETTERS December 10, 2011

Fig. 3. Variance of the intensity of reconstructed images ver-
sus the iteration number.

Fig. 4. Reconstructed image of the bit array with the inten-
sity profile (third column) and the structure (a, b) of spots.

is necessary to satisfy the condition |xo, yo| 6 ∆x/2.
This implies that the maximally admissible shift of the
reconstructed image is equal to a half of the linear size
of the diffraction order. Illuminating by a plane wave,
the kinoform calculated for the object f̃(x, y) in the frac-
tional order Px = xo/∆x, Py = yo/∆y will reconstruct
the nondistorted image of the object f(x, y).

We note that, at the reconstruction into the orders
Px = 0.25 and Px=0.50 (Py = 0) the lattice period will
be formed by the values of phases 0, π/2, π, 3π/2 and
0, π, respectively; for the rest values of Px, the carrier
acquires a more complicated shape. It is worth noting
that the diffraction efficiency (DE) of off-axis kinoforms
decreases, as the shift of an image increases. We shall
present below the quantitative results of experimantal
measurements of the DE of off-axis kinoforms.

A typical optical-digital Fourier system with a He-
Ne laser (543 nm) is used to investigate the kinoform
reconstruction characteristics. Here, we use a reflection-
type phase-only SLM (HEO 1080 Pluto, HOLOEYE,
Germany). The spatial calibration of the SLM was per-
formed by the method proposed in Ref. [8]. The recon-
structed images were recorded and carried out with the
use of a CCD-camera (SP620-USB, Spiricon, USA) with
a high dynamic range. The size of objects and kinoforms
was 1000×1000 (pixels) format. As the objects, we took
a 14 × 14 two-dimensional bit array occupying 200 ×
200 counts of the input plane and letter F occupying
250 × 150 counts of the input plane. We have studied
the output intensities, diffraction efficiency, as well as
the effects of quantization of the kinoform phase on the
reconstructed image[9].

In Fig. 4, we present the results of experiments with a
bit array. In calculations, we applied the stepwise quan-
tization with the number of quantization levels M=256
and the ratio of iterations GS/weighting = 25/200. The
measured intensity profile demonstrates a high homo-
geneity of light spots. Each spot of the image was
recorded by an area consisting of 9×9 pixels of a CCD-
chamber, which allows us to control the regularity of
the position of intensity maxima of a spot in the output
plane. No deviations from the regularity were observed.

In Fig. 5, the plots characterizing the quality of the
image (Fig. 4) reconstructed by an off-axis kinoform
are presented. As distinct from the model experiments
in which the WIFT-method was preferable over the IO-
method at NQL=256 (see Tables 1 and 2), both methods
in this experiment gave practically the same results. Im-
age reconstruction was carried out in order of Px = 0.4,
Py = 0.4. The error of variance of intensity obtained in
the experiment was ∼ 6 % .

Figure 6 shows the image of letter F reconstructed into
the order Px=0.50, Py=0. In Fig. 7, we demonstrate
how the DE of a kinoform varies at the subsequent shift

Fig. 5. (a) Ranges of output intensities; (b) variance of spots-
intensities versus iteration number. Curve“−”stands for the
computing results; Curves stand for the experi-
mental results.

Fig. 6. Reconstruction into the order of Px = 0.5, Py =0.
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Fig. 7. Diffraction efficiency of the off-axis kinoform vs the
partial diffraction order (for the object-letter F). Curve 1:
shift along the axis x; Curve 2: shift along the diagonal in the
x,y-plane.

of the image. Curves 1 and 2 correspond to a shift along
the axis x and along the diagonal in the x,y-plane (Px,
Py = 0, 0.1, 0.15, · · ·, 0.50), respectively. DE was defined
as the ratio of the intensity of the diffracted light to the
light intensity available for diffraction pattern. Accuracy
of the calculation DE was ∼ 2.3%. In these cases, the
synthesis of kinoforms was realized with the help of the
WIFT algorithm at the ratio of the numbers of iterations
GS/weighting = 25/200.

In conclusion, we present the results of numerical and
optical experiments studying the quality of the recon-
structed images of binary objects for off-axis quantized
kinoforms calculated with the help of the WIFT and IO
algorithms. To obtain off-axis kinoforms from on-axis
ones, we propose a simple procedure of introduction of
a spatial carrier to an on-axis kinoform, which admits a

greater shift of the reconstructed image from the optical
axis of the Fourier-system as compared with the available
ones. During the experiments with the WIFT and IO al-
gorithms, we find that the physico-technical parameters
of available SLMs do not allow one to completely realize
the potentialities of high-precision algorithms; both ones,
in this case. Apparently, we may assert that a kinoform
calculated with the help of any of the algorithms ensur-
ing the rated variance of the intensity of reconstructed
images 61×10−4 will give the image of approximately
identical quality under the realization with an SLM of
the type used by us.
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